關於防凍混凝土與抗凍混凝土的討論!

0前言

在建築行業中,有些施工人員往往把冬期施工的混凝土與結構設計有抗凍等級要求的混凝土都稱為「抗凍混凝土」。筆者認為,冬期施工的混凝土,主要是採取技術措施預防混凝土澆筑後,在未達到受凍臨界強度以前不發生凍脹破壞就達到了技術要求,應稱為防凍混凝土。而結構設計有抗凍等級要求,混凝土自身應具有長期抵抗凍融循環能力的,才應稱為抗凍混凝土。

在相關標準規範中,查不到防凍混凝土的術語,僅能查到「摻防凍劑的混凝土」或「冬期施工的混凝土」等詞語;抗凍混凝土在規範中的術語是:抗凍等級等於或大於F50級的混凝土。實際上這兩種混凝土技術要求完全不同,但標準規範沒有給出「防凍混凝土」的定義,或有些施工人員對標準規範學習不夠,因此容易引起一些施工人員對這兩種混凝土產生誤解或混淆。譬如:誤認為「抗凍混凝土就是摻防凍劑的混凝土」或「大熱天為什麼要澆築抗凍混凝土?」等。這些誤解可能造成對抗凍混凝土的生產、澆築和養護等環節的重視不夠而影響到工程質量。

Advertisements

1防凍混凝土

防凍混凝土的技術要求是:在冬期施工過程中,採取可靠的技術措施,使混凝土澆筑後儘早凝結硬化,並在未達到受凍臨界強度以前不得發生凍脹破壞。

當氣溫在0~4℃時,水的活性較低,水泥的水化反應極其緩慢,混凝土的強度發展不能達到要求。當溫度低於0℃時,混凝土內部水分大部分凍結。水結成冰后產生9%的體積膨脹,混凝土結構將遭致永久性破壞;另外,水結成冰后,混凝土中沒有足夠的液態水參與水泥的水化反應,混凝土的強度增長極慢甚至停止。因此,冬期施工澆築的混凝土宜摻入早強劑或防凍劑,並應在混凝土凝結硬化初期,採取適當的保溫或增溫措施,充分利用混凝土自身熱量或外部熱量(如電熱法、暖棚法等),確保混凝土澆筑後的起始養護溫度:嚴寒地區不低於10℃;寒冷地區不低於5℃,使混凝土強度具備正常增長的條件,儘快的獲得受凍臨界強度。

Advertisements

(1)冬期施工採取的技術措施

冬期施工是混凝土工程質量事故的多發季節,這是由於準備工作時間短,技術要求複雜,某一環節跟不上或倉促施工造成的。因此,應根據當地多年氣象資料統計,提前做好周密計劃和冬施準備工作,避免發生工程質量事故。冬期施工採取的技術措施主要有:

①材料預熱法:即先將水及砂、石預先加熱,再用於攪拌混凝土;

②蓄熱保溫法:即採用保溫材料覆蓋澆筑後的混凝土,使混凝土澆筑後在一定時間內保持不降溫或緩慢降溫;

③暖棚法:即在施工現場搭建保溫加熱暖棚,使混凝土澆筑後在暖棚內正溫環境條件下養護,有條件時最好攪拌、澆築也在暖棚內進行;

④摻入早強劑或防凍劑。

此外,冬期施工的混凝土宜適當提高水泥用量,或採用早強水泥,以及採用高性能減水劑或高效減水劑,盡量減少用水量等技術措施。

採取以上技術措施的目的,是為了控制和提高混凝土的出機溫度和入模后溫度,確保混凝土澆筑後強度具備正常增長的條件,在未達到受凍臨界強度以前不發生凍害。

(2)關於早強劑和防凍劑

當今世界混凝土破壞原因按重要性排列的順序是:鋼筋鏽蝕、寒冷氣候下的凍害、侵蝕環境的物理化學作用。因此,摻用早強劑或防凍劑的混凝土應注意要限制氯鹽含量,氯鹽是誘發鋼筋鏽蝕的一個很重要因素,預應力混凝土和鋼筋混凝土應嚴格按有關標準規範規定控制混凝土中的最大氯離子含量,避免發生工程質量事故,造成巨大浪費,國內外許多工程已為此付出了慘重代價。

①混凝土早強劑與組分

能加速混凝土早期強度發展的外加劑稱為早強劑。在實際使用中,大多為復配早強劑,無機鹽類對混凝土後期強度不利;氯鹽早強劑會引起鋼筋鏽蝕;硫酸鹽早強劑可能產生體積膨脹,使混凝土耐久性降低;鈉鹽早強劑將增加混凝土中鹼含量,與活性二氧化硅骨料產生鹼—骨料反應。早強劑過量加入,雖然混凝土早期效果好,但後期強度損失大,鹽析加劇影響混凝土飾面;增加混凝土導電性能及增大混凝土收縮開裂的危險。混凝土早強劑的主要組分有:氯化鈉、氯化鈣、硫酸鈉、硫酸鈣、硫酸鋁、重鉻酸鉀、三乙醇胺、三異丙醇胺、甲醇、乙醇、甲酸鈣、草酸鋰、乙酸鈉等。

②混凝土防凍劑與組分

能使混凝土在負溫下硬化,並在規定養護條件下達到預期性能的外加劑稱為防凍劑。防凍劑絕大多數是複合外加劑,應控制早強組分和防凍組分無機鹽類的摻入量,否則使用不當會引起混凝土後期強度倒縮、鋼筋鏽蝕及鹼—骨料反應發生。

混凝土防凍劑的主要組分有:防凍組分(如亞硝酸鈉、氯化鈉、甲醇、尿素、氯化鈣、碳酸鉀等)、引氣組分(如松香皂、松香熱聚物、烷基磺酸鈉等)、早強組分(如硫酸鈉、氯化鈣、硝酸鈣、三乙醇胺等)、減水組分(如萘系、三聚氰胺、氨基磺酸等)。

(3)關於早強劑和防凍劑的選用

我國現行標準《混凝土外加劑應用技術規範》(GB50119)第7.3.1條規定:

①在日最低氣溫為0~-5℃,混凝土採用塑料薄膜和保溫材料覆蓋養護時,可採用早強劑或早強減水劑;

②在日最低氣溫為-5~-10℃、-10~-15℃、-15~-20℃,採用上款保溫措施時,宜分別採用規定溫度為-5℃、-10℃、-15℃的防凍劑。

(4)關於冬期施工與受凍臨界強度

臨界強度是冬期澆築的混凝土在受凍以前必須達到的最低強度。

我國行業標準《建築工程冬期施工規程》JGJ104規定:根據當地多年氣象資料統計,當室外日平均氣溫連續5d穩定低於5℃(日最低氣溫低於-30℃時)即進入冬期施工;當室外日平均氣溫連續5d高於50℃時解除冬期施工。該《規程》規定冬期澆築的混凝土受凍臨界強度為:

①普通混凝土採用硅酸鹽水泥或普通硅酸鹽水泥配製時,應為設計的混凝土強度標準值的30%;採用礦渣硅酸鹽水泥配製時,應為設計的混凝土強度標準值的40%;但混凝土強度等級為C10及以下時不得小於5.0MPa。

②摻用防凍劑的混凝土,當室外最低氣溫不低於-15℃時不得小於4.0MPa;當室外最低氣溫不低於-30℃時不得小於5.0MPa。

混凝土中摻入合格的防凍劑后,能降低水的冰點,並改變了冰晶結構,使混凝土在負溫條件下不會發生凍脹破壞,且仍有足夠的液態水使水泥的水化作用得以繼續進行;轉入正溫后,混凝土強度能進一步增長,達到或超過設計強度要求。因此,《規程》規定摻用防凍劑的混凝土受凍臨界強度明顯比不摻的低。

2抗凍混凝土

抗凍混凝土是指結構設計要求混凝土具有長期抵抗凍融循環的耐久性能,即滿足結構設計規定的抗凍級別。

當抗凍混凝土在冬期環境下澆築時,還必須採取冬期施工的技術措施。抗凍混凝土無論在什麼季節施工,都必須摻引氣劑來達到結構設計的抗凍級別要求,提高混凝土含氣量(4%~6%)是提高混凝土抗凍性能最有效的技術措施。應用抗凍混凝土的工程主要有:水工、港口、橋樑及公路等。

(1)抗凍等級和抗凍標號

根據GB/T50082-2009標準,混凝土抗凍性能按試驗方法不同,分抗凍等級和抗凍標號。抗凍等級用符號F表示,而抗凍標號是用符號D表示,兩種方法均採用齡期28d的試件在吸水飽和后,檢測其承受反覆凍融循環下的性能變化。抗凍等級是以試件相對動彈性模量下降至不低於60%或者質量損失率不超過5%時的最大凍融循環次數來確定;抗凍標號是以抗壓強度損失率不超過25%或者質量損失率不超過5%時的最大凍融循環次數來確定。常用的混凝土抗凍等級有:F50、F100、F150、F200、F250、F300等,分別表示混凝土能夠承受反覆凍融循環次數為50、100、150、200、250和300次。

(2)影響混凝土抗凍性的因素

影響混凝土抗凍性的主要因素是平均氣泡間距、水膠比、含氣量、骨料和膠凝材料等。

①平均氣泡間距

平均氣泡間距是影響混凝土抗凍性最主要的因素,平均氣泡間距越大,則凍融過程中毛細孔中的靜水壓力和滲透壓力越大,混凝土的抗凍性越低;一般平均氣泡間隔係數在500μm以下可獲得高抗凍混凝土。

②水膠比

水膠比越大,混凝土中可凍水的含量越多,混凝土的結冰速度越快;氣泡結構越差,平均氣泡間距越大;混凝土強度越低,抵抗凍融的能力越差。水膠比在0.45~0.85範圍內變化時,不摻引氣劑的混凝土抗凍性變化不大,只有水膠比小於0.45以後,抗凍性才隨水膠比的降低而明顯提高;水膠比小於0.35的混凝土,即使不摻引氣劑,也有較高的抗凍性。

③含氣量

在一定範圍內,含氣量越多,混凝土的抗凍性越好。但含氣量超過一定範圍時,混凝土的抗凍性反而降低,原因是含氣量增加在降低平均氣泡間距的同時,降低了混凝土強度(混凝土含氣量每增加1%抗壓強度下降3%~5%)。一般當所用的天然骨料的最大粒徑為10~40mm時,使新澆混凝土中的含氣量達到4%~7%,可獲得足夠的抗凍性。

④混凝土強度

當靜水壓力和滲透壓力超過混凝土的抗拉強度時,混凝土即產生凍融破壞。因此作為表徵抵抗凍融破壞能力的混凝土強度對混凝土抗凍性也有影響。當含氣量或平均氣泡間距相同時,強度高的混凝土抗凍性高於強度低的混凝土。但相對而言,強度對混凝土抗凍性的影響程度遠沒有氣泡結構大。

⑤骨料

當骨料吸水飽和,受凍后在骨料孔隙和骨料-水泥漿界面產生靜力壓力,超過骨料或界面強度時就產生凍害。因此,影響骨料抗凍性的主要因素是骨料吸水率和骨料尺寸。用吸水率大的骨料(如輕骨料)配製抗凍混凝土更依賴引氣劑的摻入;骨料尺寸越大,受凍后越容易破壞,但細骨料對混凝土的抗凍性影響不大。此外,骨料的堅固性、風化程度、粘土含量、雜質含量等對混凝土抗凍性也有影響。

⑥水泥品種和用量

水泥中隨混合材摻入量的增加,混凝土的抗凍性降低,因此抗凍混凝土用硅酸鹽水泥配製要優於用其它品種的水泥。對於非引氣混凝土,水泥品種和用量對混凝土抗凍性有一定的影響,而對於引氣混凝土,這種影響不大。

⑦混合材

粉煤灰摻量在一定範圍內,且強度和含氣量相同的條件下,摻與不摻粉煤灰的混凝土抗凍性基本相同。但當粉煤灰摻量超過一定範圍時,會降低混凝土的抗凍性。硅粉摻量不超過10%時,混凝土的抗凍性有所提高,超過15%時抗凍性則會明顯降低。

⑧養護

混凝土澆筑後的早期養護對混凝土結構實體強度有明顯的影響。筆者用C30泵送混凝土,成型150mm的立方體試件進行試驗,從試驗結果來看,澆水養護14d的試件抗壓強度平均比不澆水養護的試件高4.4MPa,28d碳化厚度少1.5~2.0mm;不澆水試件對回彈推定強度的影響更大。充分說明養護方法對混凝土的抗凍性也有一定的影響。因此,混凝土澆筑後應及時採取有效的保濕養護措施,既增強又防裂,提高混凝土的耐久性。

3關於引氣劑

引氣劑的使用延長了混凝土的使用壽命,增加了混凝土的耐久性。

(1)引氣劑的定義

在混凝土攪拌過程中能引入大量均勻分佈、穩定而封閉的微小氣泡且能保留在硬化混凝土中的外加劑稱為引氣劑。

(2)引氣劑的貢獻

混凝土中摻加引氣劑后,改善了混凝土的和易性,減少拌合物的離析和泌水,由於氣泡彼此隔離,切斷毛細孔通道,使水分不易滲入,又可緩衝其水分結冰膨脹作用,因而可顯著改善混凝土的防凍性、抗凍性、抗滲性和抗腐蝕性等。其改善程度不是百分之幾十,而通常是幾倍,甚至十幾倍地提高,從而大大延長混凝土在受凍融循環情況下的使用壽命,它對混凝土綜合耐久性的提高起著不可替代的作用。因此,引氣劑是抗凍混凝土和防凍混凝土的重要組分。

(3)引氣劑的選擇與應用

不同品種的引氣劑不僅影響含氣量而且影響氣泡的質量,一般十二烷基磺酸鈉與十二烷基苯磺酸鈉起泡能力強,但泡沫較大,穩定性差;烷基醇聚氧乙烯醚的起泡能力強差;而松香皂、松香熱聚物、三帖皂苷能產生大量均勻、穩定的微氣泡,因此它們成為首選的引氣劑。

引氣劑的摻量很少,一般為膠凝材料總量的十萬分之幾到萬分之一或二,應以混凝土拌合物中含氣量達到4%~6%為宜,過量摻入,混凝土工作性反而降低,更會對混凝土抗壓強度、抗凍、抗滲、抗碳化性能產生不良影響。引氣劑可與其他外加劑複合使用,當在混凝土攪拌過程中單獨摻入時,應先配成溶液,再稀釋到一定的濃度后摻入。

(4)影響混凝土拌合物含氣量的因素

引氣劑含氣量的大小除了本身品質以外,水泥和骨料以及混凝土生產、施工中諸因素對其也有明顯影響。

①組成材料

水泥細度大、含鹼量高,含氣量均減少;相同摻量時,硅酸鹽水泥含氣量依次大於普通水泥、礦渣水泥、火山灰質水泥;水泥每增加90kg/m3含氣量約減少1%。

粉煤灰有較強的吸附作用,將明顯降低混凝土含氣量,因此當要求有較高的混凝土含氣量時,應控制粉煤灰的摻量或適當增加引氣劑的摻量。另外,礦物摻合料的細度越大,引氣量越小。

粗骨料直徑大,含氣量則小;卵石比碎石骨料含氣量大。

天然砂含氣量大於人工砂;砂的粒徑範圍在0.3~0.6mm時混凝土含氣量最大,而小於0.3mm或大於0.6mm時,混凝土含氣量都明顯下降;砂率大則含氣量也大,但當砂率提高到一定程度時,含氣量的變化就不明顯。

②水膠比

水膠比影響混凝土拌合物的黏度,水膠比低拌合物的黏度大,黏度大的混凝土拌合物將減小含氣量的生成、數量和質量,因而水膠比越小則意味著引氣劑摻量的增加。

③攪拌

機械攪拌比人工攪拌含氣量大;一般攪拌5min含氣量最大;攪拌時間過長含氣量小,攪拌時間不足含氣量也小;不同的攪拌設備對含氣量有一定的影響,最佳攪拌時間應通過實際生產攪拌設備與試驗相結合確定。

④混凝土溫度

混凝土溫度高含氣量損失快,每升高10℃含氣量可減少20%~30%,因此在炎熱夏季施工時應適當增加引氣劑摻量。

⑤混凝土坍落度

混凝土坍落度對含氣量有一定的影響,坍落度越大則含氣量越高;換而言之,拌合用水增加則含氣量也會增加。

⑥放置與運輸

拌合物放置時間和運輸時間越長,含氣量損失越大,但不同的引氣劑其含氣量損失有不同。

⑦泵送工藝

通過泵送的混凝土,其泵送以後混凝土含氣量下降,但不同的引氣劑其含氣量損失有不同。

⑧振搗方式

各種振搗方式皆會降低混凝土含氣量,採用插入式振動棒振搗比平板、台式振動含氣量損失更大;高頻振搗、振搗時間延長都會明顯降低含氣量。

綜上所述,影響混凝土拌合物含氣量的因素較多,而含氣量的確定既要考慮改善混凝土內部結構,提高抗凍性、抗滲性等,又要兼顧對混凝土強度產生的不利影響。因此,配製摻引氣劑的混凝土應持慎重態度,應根據材料、工藝狀況等,通過模擬試驗確定引氣劑品種和摻量。

Advertisements

你可能會喜歡