漲知識:太陽能電池光電轉換的原理及原理圖

太陽能是人類取之不盡用之不竭的可再生能源。也是清潔能源,不產生任何的環境污染。在太陽能的有效利用當中;大陽能光電利用是近些年來發展最快,最具活力的研究領域,是其中最受矚目的項目之一。

制作太陽能電池主要是以半導體材料為基礎,其工作原理是利用光電材料吸收光能后發生光電於轉換反應,根據所用材料的不同,太陽能電池可分為:1、硅太陽能電池;2、以無機鹽如砷化鎵III-V化合物、硫化鎘、銅銦硒等多元化合物為材料的電池;3、功能高分子材料製備的大陽能電池;4、納米晶太陽能電池等。

一、硅太陽能電池

1.硅太陽能電池工作原理與結構

太陽能電池發電的原理主要是半導體的光電效應,一般的半導體主要結構如下:

圖中,正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊的四個電子。

Advertisements

當硅晶體中摻入其他的雜質,如硼、磷等,當摻入硼時,硅晶體中就會存在著一個空穴,它的形成可以參照下圖:

圖中,正電荷表示硅原子,負電荷表示圍繞在硅原子旁邊的四個電子。而黃色的表示摻入的硼原子,因為硼原子周圍只有3個電子,所以就會產生入圖所示的藍色的空穴,這個空穴因為沒有電子而變得很不穩定,容易吸收電子而中和,形成P(positive)型半導體。

同樣,摻入磷原子以後,因為磷原子有五個電子,所以就會有一個電子變得非常活躍,形成N(negative)型半導體。黃色的為磷原子核,紅色的為多餘的電子。如下圖。

N型半導體中含有較多的空穴,而P型半導體中含有較多的電子,這樣,當P型和N型半導體結合在一起時,就會在接觸面形成電勢差,這就是PN結。

Advertisements

當P型和N型半導體結合在一起時,在兩種半導體的交界面區域里會形成一個特殊的薄層),界面的P型一側帶負電,N型一側帶正電。這是由於P型半導體多空穴,N型半導體多自由電子,出現了濃度差。N區的電子會擴散到P區,P區的空穴會擴散到N區,一旦擴散就形成了一個由N指向P的「內電場」,從而阻止擴散進行。達到平衡后,就形成了這樣一個特殊的薄層形成電勢差,這就是PN結。

當晶片受光后,PN結中,N型半導體的空穴往P型區移動,而P型區中的電子往N型區移動,從而形成從N型區到P型區的電流。然後在PN結中形成電勢差,這就形成了電源。(如下圖所示)

由於半導體不是電的良導體,電子在通過p-n結后如果在半導體中流動,電阻非常大,損耗也就非常大。但如果在上層全部塗上金屬,陽光就不能通過,電流就不能產生,因此一般用金屬網格覆蓋p-n結(如圖 梳狀電極),以增加入射光的面積。

另外硅表面非常光亮,會反射掉大量的太陽光,不能被電池利用。為此,科學家們給它塗上了一層反射係數非常小的保護膜(如圖),將反射損失減小到5%甚至更小。一個電池所能提供的電流和電壓畢竟有限,於是人們又將很多電池(通常是36個)並聯或串聯起來使用,形成太陽能光電板。

2.硅太陽能電池的生產流程

通常的晶體硅太陽能電池是在厚度350~450μm的高質量矽片上製成的,這種矽片從提拉或澆鑄的硅錠上鋸割而成。

上述方法實際消耗的硅材料更多。為了節省材料,目前製備多晶硅薄膜電池多採用化學氣相沉積法,包括低壓化學氣相沉積(LPCVD)和等離子增強化學氣相沉積(PECVD)工藝。此外,液相外延法(LPPE)和濺射沉積法也可用來製備多晶硅薄膜電池。

化學氣相沉積主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,為反應氣體,在一定的保護氣氛下反應生成硅原子並沉積在加熱的襯底上,襯底材料一般選用Si、SiO2、Si3N4等。但研究發現,在非硅襯底上很難形成較大的晶粒,並且容易在晶粒間形成空隙。解決這一問題辦法是先用 LPCVD在襯底上沉積一層較薄的非晶硅層,再將這層非晶硅層退火,得到較大的晶粒,然後再在這層籽晶上沉積厚的多晶硅薄膜,因此,再結晶技術無疑是很重要的一個環節,目前採用的技術主要有固相結晶法和中區熔再結晶法。多晶硅薄膜電池除採用了再結晶工藝外,另外採用了幾乎所有製備單晶硅太陽能電池的技術,這樣製得的太陽能電池轉換效率明顯提高。

三、納米晶化學太陽能電池

在太陽能電池中硅系太陽能電池無疑是發展最成熟的,但由於成本居高不下,遠不能滿足大規模推廣應用的要求。為此,人們一直不斷在工藝、新材料、電池薄膜化等方面進行探索,而這當中新近發展的納米TiO2晶體化學能太陽能電池受到國內外科學家的重視。

以染料敏化納米晶體太陽能電池(DSSCs)為例,這種電池主要包括鍍有透明導電膜的玻璃基底,染料敏化的半導體材料、對電極以及電解質等幾部分。

陽極:染料敏化半導體薄膜(TiO2膜)

陰極:鍍鉑的導電玻璃

電解質:I3-/I-

如圖所示,白色小球表示TiO2,紅色小球表示染料分子。染料分子吸收太陽光能躍遷到激發態,激發態不穩定,電子快速注入到緊鄰的TiO2導帶,染料中失去的電子則很快從電解質中得到補償,進入TiO2導帶中的電於最終進入導電膜,然後通過外迴路產生光電流。

納米晶TiO2太陽能電池的優點在於它廉價的成本和簡單的工藝及穩定的性能。其光電效率穩定在10%以上,製作成本僅為硅太陽電池的1/5~1/10.壽命能達到20年以上。但由於此類電池的研究和開發剛剛起步,估計不久的將來會逐步走上市場。

四、染料敏化TiO2太陽能電池的手工製作

1.製作二氧化鈦膜

(1)先把二氧化鈦粉末放入研缽中與粘合劑進行研磨

(2)接著用玻璃棒緩慢地在導電玻璃上進行塗膜

(3)把二氧化鈦膜放入酒精燈下燒結10~15分鐘,然後冷卻

2.利用天然染料為二氧化鈦著色

如圖所示,把新鮮的或冰凍的黑梅、山梅、石榴籽或紅茶,加一湯匙的水並進行擠壓,然後把二氧化鈦膜放進去進行著色,大約需要5分鐘,直到膜層變成深紫色,如果膜層兩面著色的不均勻,可以再放進去浸泡5分鐘,然後用乙醇沖洗,並用柔軟的紙輕輕地擦乾。

3.製作正電極

由染料著色的TiO2為電子流出的一極(即負極)。正電極可由導電玻璃的導電面(塗有導電的SnO2膜層)構成,利用一個簡單的萬用表就可以判斷玻璃的那一面是可以導電的,利用手指也可以做出判斷,導電面較為粗糙。如圖所示,把非導電面標上『+』,然後用鉛筆在導電面上均勻地塗上一層石墨。

4.加入電解質

利用含碘離子的溶液作為太陽能電池的電解質,它主要用於還原和再生染料。如圖所示,在二氧化鈦膜表面上滴加一到兩滴電解質即可。

5.組裝電池

把著色后的二氧化鈦膜面朝上放在桌上,在膜上面滴一到兩滴含碘和碘離子的電解質,然後把正電極的導電面朝下壓在二氧化鈦膜上。把兩片玻璃稍微錯開,用兩個夾子把電池夾住,兩片玻璃暴露在外面的部分用以連接導線。這樣,你的太陽能電池就做成了。

6.電池的測試

在室外太陽光下,檢測你的太陽能電池是否可以產生電流。

更多內容可以關注集邦新能源網微信號:energytrend

Advertisements

你可能會喜歡